What is ChatGPT? and How to use ChatGPT?

Image
        ChatGPT was revealed in November 2022.Similar to the printing press and the internet, it has impacted enterprise and enterprise inclusive of better education. At its core, ChatGPT uses artificial intelligence to generate answers to questions on a variety of topics. In education, camps are divided for those who want ChatGPT banned because they see it as a way for students to cheat. Instead, others see it as a tool to continue learning. As a technologist, I see great potential in chatGPT. I've already started using it to support the teachers I work with. This article provides an example of using chatGPT to enhance the classroom experience for teaching and learning. I'm sharing a few ways to use ChatGPT in your classroom. I give an example for each idea. This example is divided into two parts: • Instructions provided for chatGPT. These are written in bold letters. • Reply on chatGPT. These are written in italics. I would like to point out that I do not...

Bohr, Niels

Introduction

One of the foremost scientists of the 20th century, Niels Henrik David Bohr was the first to apply the quantum theory, which restricts the energy of a system to certain discrete values, to the problem of atomic and molecular structure. He was a guiding spirit and major contributor to the development of quantum mechanics and atomic physics. His work on atomic theory was recognized by the Nobel Prize for Physics in 1922.

Early life.

Bohr was born in Copenhagen on Oct. 7, 1885. His father, Christian Bohr, professor of physiology at the University of Copenhagen, was known for his work on the physical and chemical aspects of respiration. His mother, Ellen Adler Bohr, came from a wealthy Jewish family prominent in Danish banking and parliamentary circles. Bohr's scientific interests and abilities were evident early, and they were encouraged and fostered in a warm, intellectual family atmosphere. Niels's younger brother, Harald, became a brilliant mathematician. Bohr distinguished himself at the University of Copenhagen, winning a gold medal from the Royal Danish Academy of Sciences and Letters for his theoretical analysis of and precise experiments on the vibrations of water jets as a way of determining surface tension. In 1911 he received his doctorate for a thesis on the electron theory of metals that stressed the inadequacies of classical physics for treating the behaviour of matter at the atomic level. He then went to England, intending to continue this work with Sir J.J. Thomson at Cambridge. Thomson never showed much interest in Bohr's ideas on electrons in metals, however, although he had worked on this subject in earlier years. Bohr moved to Manchester in March 1912 and joined Ernest Rutherford's group studying the structure of the atom.
At Manchester Bohr worked on the theoretical implications of the nuclear model of the atom recently proposed by Rutherford and known as the Rutherford atomic model. Bohr was among the first to see the importance of the atomic number, which indicates the position of an element in the periodic table and is equal to the number of natural units of electric charge on the nuclei of its atoms. He recognized that the various physical and chemical properties of the elements depend on the electrons moving around the nuclei of their atoms and that only the atomic weight and possible radioactive behaviour are determined by the small but massive nucleus itself. Rutherford's nuclear atom was both mechanically and electromagnetically unstable, but Bohr imposed stability on it by introducing the new and not yet clarified ideas of the quantum theory being developed by Max Planck, Albert Einstein, and other physicists. Departing radically from classical physics, Bohr postulated that any atom could exist only in a discrete set of stable or stationary states, each characterized by a definite value of its energy. This description of atomic structure is known as the Bohr atomic model.
The most impressive result of Bohr's essay at a quantum theory of the atom was the way it accounted for the series of lines observed in the spectrum of light emitted by atomic hydrogen. He was able to determine the frequencies of these spectral lines to considerable accuracy from his theory, expressing them in terms of the charge and mass of the electron and Planck's constant (the quantum of action, designated by the symbol h). To do this, Bohr also postulated that an atom would not emit radiation while it was in one of its stable states but rather only when it made a transition between states. The frequency of the radiation so emitted would be equal to the difference in energy between those states divided by Planck's constant. This meant that the atom could neither absorb nor emit radiation continuously but only in finite steps or quantum jumps. It also meant that the various frequencies of the radiation emitted by an atom were not equal to the frequencies with which the electrons moved within the atom, a bold idea that some of Bohr's contemporaries found particularly difficult to accept. The consequences of Bohr's theory, however, were confirmed by new spectroscopic measurements and other experiments.
Bohr returned to Copenhagen from Manchester during the summer of 1912, married Margrethe Nørlund, and continued to develop his new approach to the physics of the atom. The work was completed in 1913 in Copenhagen but was first published in England. In 1916, after serving as a lecturer in Copenhagen and then in Manchester, Bohr was appointed to a professorship in his native city. The university created for Bohr a new Institute of Theoretical Physics, which opened its doors in 1921; he served as director for the rest of his life.
Through the early 1920s, Bohr concentrated his efforts on two interrelated sets of problems. He tried to develop a consistent quantum theory that would replace classical mechanics and electrodynamics at the atomic level and be adequate for treating all aspects of the atomic world. He also tried to explain the structure and properties of the atoms of all the chemical elements, particularly the regularities expressed in the periodic table and the complex patterns observed in the spectra emitted by atoms. In this period of uncertain foundations, tentative theories, and doubtful models, Bohr's work was often guided by his correspondence principle. According to this principle, every transition process between stationary states as given by the quantum postulate can be "coordinated" with a corresponding harmonic component (of a single frequency) in the motion of the electrons as described by classical mechanics. As Bohr put it in 1923, "notwithstanding the fundamental departure from the ideas of the classical theories of mechanics and electrodynamics involved in these postulates, it has been possible to trace a connection between the radiation emitted by the atom and the motion of the particles which exhibits a far-reaching analogy to that claimed by the classical ideas of the origin of radiation." Indeed, in a suitable limit the frequencies calculated by the two very different methods would agree exactly.
Bohr's institute in Copenhagen soon became an international centre for work on atomic physics and the quantum theory. Even during the early years of its existence, Bohr had a series of coworkers from many lands, including H.A. Kramers from The Netherlands, Georg Charles von Hevesy from Hungary, Oskar Klein from Sweden, Werner Heisenberg from Germany, and John Slater from the United States. Bohr himself began to travel more widely, lecturing in many European countries and in Canada and the United States.
At this time, more than any of his contemporaries, Bohr stressed the tentative and symbolic nature of the atomic models that were being used, since he was convinced that even more radical changes in physics were still to come. In 1924 he was ready to consider the possibility that the conservation laws for energy and momentum did not hold exactly on the atomic level but were valid only as statistical averages. This extreme measure for avoiding the apparently paradoxical particle-like properties of light soon proved to be untenable and also unnecessary. During the next few years, a genuine quantum mechanics was created, the new synthesis that Bohr had been expecting. The new quantum mechanics required more than just a mathematical structure of calculating; it required a physical interpretation. That physical interpretation came out of the intense discussions between Bohr and the steady stream of visitors to his world capital of atomic physics, discussions on how the new mathematical description of nature was to be linked with the procedures and the results of experimental physics.
Bohr expressed the characteristic feature of quantum physics in his principle of complementarity, which "implies the impossibility of any sharp separation between the behaviour of atomic objects and the interaction with the measuring instruments which serve to define the conditions under which the phenomena appear." As a result, "evidence obtained under different experimental conditions cannot be comprehended within a single picture, but must be regarded as complementary in the sense that only the totality of the phenomena exhausts the possible information about the objects." This interpretation of the meaning of quantum physics, which implied an altered view of the meaning of physical explanation, gradually came to be accepted by the majority of physicists. The most famous and most outspoken dissenter, however, was Einstein.
Einstein greatly admired Bohr's early work, referring to it as "the highest form of musicality in the sphere of thought," but he never accepted Bohr's claim that quantum mechanics was the "rational generalization of classical physics" demanded for the understanding of atomic phenomena. Einstein and Bohr discussed the fundamental questions of physics on a number of occasions, sometimes brought together by a close mutual friend, Paul Ehrenfest, professor of theoretical physics at the University of Leiden, Neth., but they never came to basic agreement. In his account of these discussions, however, Bohr emphasized how important Einstein's challenging objections had been to the evolution of his own ideas and what a deep and lasting impression they had made on him.
During the 1930s Bohr continued to work on the epistemological problems raised by the quantum theory and also contributed to the new field of nuclear physics. His liquid-drop model of the atomic nucleus, so called because he likened the nucleus to a liquid droplet, was a key step in the understanding of many nuclear processes. In particular, it played an essential part in 1939 in the understanding of nuclear fission (the splitting of a heavy nucleus into two parts, almost equal in mass, with the release of a tremendous amount of energy). Similarly, his compound-nucleus model of the atom proved successful in explaining other types of nuclear reactions.
Bohr's institute continued to be a focal point for theoretical physicists until the outbreak of World War II. The annual conferences on nuclear physics as well as formal and informal visits of varied duration brought virtually everyone concerned with quantum physics to Copenhagen at one time or another. Many of Bohr's collaborators in those years have written lovingly about the extraordinary spirit of the institute, where young scientists from many countries worked together and played together in a lighthearted mood that concealed both their absolutely serious concern with physics and the darkening world outside. "Even Bohr," wrote H.B.G. Casimir, one of the liveliest of the group, "who concentrated more intensely and had more staying power than any of us, looked for relaxation in crossword puzzles, in sports, and in facetious discussions."


Niels Bohr - Model of Atomic Structure:
Niels Bohr published his model of atomic structure in 1913. His theory was the first to
  • that electrons traveled in orbits around the atom's nucleus
  • that the chemical properties of the element was largely determined by the number of electrons in the outer orbits
  • that an electron could drop from a higher-energy orbit to a lower one, emitting a photon (light quantum) of discrete energy
Niels Bohr model of atomic structure became the basis for all future quantum theories. Werner Heisenberg and Niels Bohr:
In 1941, German scientist Werner Heisenberg made a secret and dangerous trip to Denmark to visit his former mentor, physicist Niels Bohr. The two friends had once worked together to split the atom until World War II divided them. Werner Heisenberg worked on a German project to develop atomic weapons, while Niels Bohr worked on the Manhattan Project to create the first atomic bomb.

Comments

Popular posts from this blog

What is internet marketing

chat gpt ai chatbot - How Chat GPT AI Chatbot Works

The Best Android Apps for 2023